- Obtain the Lagrangian for a system with Hamiltonian given by \[ H= \frac{p^2}{2\alpha} - b pq e^{-\alpha t} + \frac{ba}{2}q^2 e^{-\alpha t}(\alpha + be^{-\alpha t} ) + \frac{1}{2} k q^2\]
- Find condition(s) relating parameters \(a\) and \(\alpha\) such that the Lagrangian \(L\) of the system can be written as another Lagrangian \(L_1\) up to a total time derivative of some function \(\Omega\), {\it i.e.}, \[ L-L_1= \frac{d\Omega}{dt}.\] and where \(\Omega\ne0\).
Using the new Lagrangian \(L_1\) find a constant of motion for the system.
Exclude node summary :
n
Exclude node links:
0
4727:Diamond Point
0





||Message]