VS-02 Problem Set

Linear Independence, Basis and Dimension

A. K. Kapoor http://0space.org/users/kapoor akkapoor@iitbbs.ac.in; akkhcu@gmail.com

- ⊘ Write short answers to the following questions.
- [1] Prove that the set

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

is a basis in the vector space of 2×2 real matrices with \mathbb{R} as the field of scalars.

- [2] . Show that the Pauli matrices, $\sigma_x, \sigma_y, \sigma_z$, do not form a basis for the vector space of all 2×2 complex matrices with \mathbb{C} as the field of complex numbers.
- [3] Show that the vectors (1,1,1,-1), (1,1,-1,1), (1,-1,1,1), (4,2,2,0) cannot be a basis in \mathbb{R}^4 because the vectors are not linearly independent.
- [4] The set of vectors $\{(1,1,1,1),(1,-1,1,1),(1,1-1,1)\}$ is linearly independent in Rbb^4 but is not a basis. WHY?
- [5] Prove that a set of three vectors $\{\vec{u}, \vec{v}, \vec{w}\}$ forms a basis if and only if $\vec{u} \cdot \vec{v} \times \vec{w}$ is nonzero.
- [6] Generalize the result of $\mathcal{Q}[5]$ above to \mathbb{R}^n and give a short proof.
- [7] Let $\mathcal{V} = \mathbb{R}$ and $\mathcal{F} = \mathbb{R}$. Is the set $\{1, \sqrt{2}\}$ a linearly independent set?
- [8] Let $\mathcal{V} = \mathbb{R}$ and $\mathcal{F} = \mathbb{Q}$ Is the set 1, $\sqrt{2}$ a linearly independent set? WHY?
- [9] Is the set $\{1+i, 1-i\}$ a linearly independent set in the vector space \mathbb{C} ? The field of scalars is given to be the set \mathbb{R} of real numbers.

[10] Give a basis for vector space \mathbb{C} on field \mathbb{C} of scalars. Also give a basis for vector space \mathbb{C} with real numbers \mathbb{R} as the field of scalars.

vs-pset-02001.pdf Ver 17.10.x Created : October 7, 2017 Printed : October 8, 2017 No Warranty, Implied or Otherwise License: Creative Commons http://0space/node/1816 PROOFS