Notes for Lectures in Quantum Mechanics * Density Matrix

A. K. Kapoor http://0space.org/users/kapoor

akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

1	Properties of density matrix	1
2	Density matrix and ensemble of pure states	2
3	Partial Trace	3
4	An example	4

1 Properties of density matrix

A mixed system is described by a density matrix ρ having properties (i) $Tr\rho = 1$ and (ii) ρ is a positive matrix. A matrix ρ represents a pure state if and only if $\rho^2 = \rho$.

We list some results about the density matrix.

- 1. The positivity property implies that the density matrix is hermitian.
- 2. Condition $\rho^2 = \rho$ implies that ρ has eigenvalues 0 and 1.
- 3. $\rho^2 = \rho$ together with $Tr\rho = 1$ implies that the eigenvalue 1 is non-degenerate. All other eigenvalues are zero. Hence spectral theorem implies that $\rho = |\psi\rangle\langle\psi|$, where $|\psi\rangle$ is the eigenvector corresponding to the eigenvalue 1. In this case the state is describe by vector $|\psi\rangle$ and is a pure state.
- 4. ρ being, a positive operator, is necessarily hermitian.

^{*}qcqi-lec-03002; Updated:Nov 15, 2021; Ver 0.x

5. A necessary and sufficient condition that ρ may represent a pure state is $Tr(\rho^2) = Tr(\rho^3) = Tr(\rho)$. Note that this is stated entirely in terms of traces of the density operator.

Question for you: Why do we need $Tr\rho^3 = Tr(\rho^2) = 1$. Give an example to show that the condition $Tr(\rho^2) = 1$ is not sufficient to restrict ρ to be a density operator. However $Tr\rho^3 = 1$ and $Tr\rho^2 = 1$ taken together are sufficient for ρ to be a density operator for a pure state.

2 Density matrix and ensemble of pure states

A mixed state can be thought of as an ensemble of pure states $\{|\psi_k\rangle\}$. If p_k is the probability of system being in state $|\psi_k\rangle$, then the density operator can be written as a convex linear combination of projection operators $|\psi_k\rangle\langle\psi_k|$

$$\rho = \sum_{k} p_k |\psi_k\rangle\langle\psi_k| , \qquad p_k > 0.$$
 (1)

with $\sum p_k = 1$. The representation (1) of a density operator in terms of ensemble of pure state is not unique.

To see a proof of this statement let $|\lambda_k\rangle$ denote normalized eigenvectors of ρ thus

$$\rho = \sum_{k=1}^{n} \lambda_k |\lambda_k\rangle\langle\lambda_k| , \qquad \sum \lambda_k = 1 , \qquad (2)$$

where λ_k are eigenvalues of ρ . If we define

$$\sqrt{p_m}|\phi_m\rangle = \sum U_{mn}\sqrt{\lambda n}|\lambda_n\rangle .$$
(3)

Then it is easy to verify that

$$\sum p_m |\phi_m\rangle\langle\phi_m| = \sum \lambda_k |\lambda_k\rangle\langle\lambda_k| = \rho.$$
 (4)

Thus there are infinite ways of interpreting the system as an ensemble of pure state $|\phi_i\rangle$, are for each unitary matrix.

We quote a result [Subahash] about restrictions on the probability distributions $\{p_i\}$ consistent with a given ρ . If the eigenvalues λ_i of ρ and the probabilities $\{p_i\}$ are arranged in descending order to obtain ordered sequences $\{\lambda_{\alpha}\}_{\downarrow}$ and $\{p_{\alpha}\}_{\downarrow}$, then the former sequence majorized the latter;

the partial sums of the first r entries of the form is greater than or equal to the corresponding sums of the latter for any r. Thus result shows, in particular, that uniform distribution - all p_r 's equal is always admissible for any ρ .

Reference: Subash Chaturvedi, "Lecture Notes" (2013).

3 Partial Trace

Given a density matrix ρ for a composite system, having subsystems A and B, we ask what happens if we restrict our attention to one of the subsystems, say A (or B). The subsystems are described by taking partial trace of the density matrix ρ . The process of taking partial trace will be described now. Let ρ_A , ρ_B and ρ denote the density operators describing systems A, B and the composite system AB respectively. Let $\{|A_i\rangle\}$ and $\{|B_r\rangle\}$ denote orthonormal bases on \mathcal{H}_A and \mathcal{H}_B respectively.

Recall that the trace of an operator \hat{X} in a Hilbert space can be defined by writing its matrix representation $(\hat{X})_{mn}$ w.r.t. an orthonormal basis $\{|n\rangle\}$ and summing over diagonal elements

$$tr(\hat{X}) = \sum_{m,n=1}^{N} \delta_{mn}(\hat{X})_{mn}$$
$$= \sum_{m} (\hat{X})_{mn}$$
(5)

In case of an operator an tensor product Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$, we first form orthonormal basis in $\mathcal{H}_A \otimes \mathcal{H}_B$ as

$$|aA, \nu B\rangle = |aA\rangle \otimes |\nu B\rangle \tag{6}$$

where $\{|aA\rangle|\nu=1,N\}$ and $\{|\nu B\rangle|\nu=1\cdots N\}$ are orthonormal bases in \mathcal{H}_A and \mathcal{H}_B respectively. The partial traces of an operator \mathscr{X} are defined as

partial trace of
$$\mathscr{X}$$
 over $B = \sum_{\nu=1}^{N} \langle aA, \nu B | \hat{\mathscr{X}} | bA, \sigma B \rangle \delta_{\nu\sigma} \equiv (\mathscr{X}_A)_{ab}$ (7)

partial trace of
$$\mathscr{X}$$
 over $A = \sum_{a=1}^{N} \langle aA, \nu B | \hat{\mathscr{X}} | bA, \sigma B \rangle \delta_{ab} \equiv (\mathscr{X}_B)_{\nu\sigma}$ (8)

These lead to matrices $(\mathscr{X}_A)_{ab}$ and $(\mathscr{X}_B)_{\nu\sigma}$ which represent operators in \mathscr{A} and \mathscr{H}_B respectively.

Thus we have

$$(\rho_A)_{ab} = \sum_{\nu=1}^{N} \langle aA, \nu B | \rho | bA, \nu B \rangle$$

and the partial trace of ρ over B can expressed in an operator form as

$$\rho_{A} = \sum_{a,b} (\rho_{A})_{ab} |a\rangle\langle b|$$

$$= \sum_{a,b} \sum_{\nu} \langle aA, \nu B | \rho | bA, \nu B \rangle\langle a | |b\rangle$$

with similar expressions for partial trace of density operator ρ over A. It is obvious that $Tr(\rho) = Tr(\rho_A) = Tr(\rho_B)$, partial trace operation does not change the trace of the operators. However if ρ is a positive operator, the act of taking partial trace does not always lead to a positive operator in the subspace.

4 An example

The density operator for composite system in pure state in $\mathcal{H}_A \otimes \mathcal{H}_B$, after partial trace leads to density matrix which, in general, does not correspond to a pure state.

Example: Consider Bell state $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ having density matrix

$$\begin{array}{lcl} \rho & = & \frac{1}{2}(|00\rangle + |11\rangle)(\langle 00| + \langle 11|) \\ \\ & = & \frac{1}{2}|00\rangle > \langle 001| + \frac{1}{2}|00\rangle\langle 11| + \frac{1}{2}|11\rangle\langle 00| + \frac{1}{2}|11\rangle\langle 11| \end{array}$$

 ρ_A is then given by

$$\rho_A = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$$

and we compute

$$\rho_A^2 = \frac{1}{4}|0\rangle\langle 0| + \frac{1}{4}|1\rangle\langle 1| \neq \rho_A$$

 \therefore The density operator ρ_A for the subsystem A does not correspond to a pure state.